Fluorescence response mechanism of D-glucose selectivity for supramolecular probes composed of phenylboronic-acid-modified beta-cyclodextrin and styrylpyridinium dyes.

نویسندگان

  • Iwao Suzuki
  • Akiyo Yamauchi
  • Yoshiko Sakashita
  • Kazuaki Hirose
  • Takashi Miura
  • Takashi Hayashita
چکیده

Supramolecular complex formation of phenylboronic-acid-modified beta-cyclodextrin (1) with 1-methyl-4-(4-dimethylaminostyryl)pyridinium (C1SP) in aqueous solutions containing saccharides was fully clarified to gain an insight into the observed D-glucose (D-glc) selectivity of a supramolecular fluorescent probe composed of 1 and the 1-heptyl analogue of C1SP (Chem. Commun., 2006, 4319). At pH 9.6, where 1 was in its anionic form, both the stability and the fluorescence of the 1/C1SP complex were reduced by the formation of boronate esters of 1 with saccharides. Among the saccharides, D-glc had the smallest effect on destabilization of the 1/C1SP complex, almost completely retaining the fluorescence of the 1/C1SP complex that was reduced by other saccharides by approximately 2/3. Under neutral conditions, D-glc enhanced the fluorescence of the 1/C1SP complex by increasing the fraction of anionic 1 while minimally decreasing the stability and fluorescence of the 1/C1SP complex. Although other saccharides also increased the fraction of the anionic 1, their relatively large effects on the destabilization and reduction of fluorescence of the 1/C1SP complex limited the enhancement of the fluorescence of the 1-C1SP system under neutral conditions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Boronic acid fluorophore/beta-cyclodextrin complex sensors for selective sugar recognition in water.

A novel boronic acid fluorophore 1/beta-cyclodextrin (beta-CyD) complex sensor for sugar recognition in water has been designed. The probe 1 bearing pyrene moiety as a fluorescent signal transducer exhibits no fluorescence emission, due to its aggregation in water containing 2% DMSO; however, the addition of beta-CyD to this solution largely changes UV-vis and fluorescence spectra of 1 by formi...

متن کامل

Sugar-Responsive Pseudopolyrotaxane Composed of Phenylboronic Acid-Modified Polyethylene Glycol and γ-Cyclodextrin

We have designed a sugar-responsive pseudopolyrotaxane (PPRX) by combining phenylboronic acid-modified polyethylene glycol (PBA-PEG) and γ-cyclodextrin. Phenylboronic acid (PBA) was used as a sugar-recognition motif in the PPRX because PBA reacts with a diol portion of the sugar molecule and forms a cyclic ester. When D-fructose or D-glucose was added to a suspension of PPRX, PPRX disintegrated...

متن کامل

Effect of cyclodextrins on saccharide sensing function of a fluorescent phenylboronic acid in water.

An inclusion complex consisting of a fluorescent phenylboronic acid (C1-APB) and beta-cyclodextrin (beta-CD) acts as a supramolecular saccharide sensor whose response mechanism is based on photoinduced electron transfer (PET). This study evaluated four kinds of cyclodextrins (alpha-CD, beta-CD, gamma-CD, and NH(2)-beta-CD) by comparing their pH profiles, and confirmed that beta-CD was the best ...

متن کامل

Simultaneous expression and transportation of insulin by supramolecular polysaccharide nanocluster

Drug/gene transportation systems with stimuli-responsive release behaviors are becoming research hotspots in biochemical and biomedical fields. In this work, a glucose-responsive supramolecular nanocluster was successfully constructed by the intermolecular complexation of phenylboronic acid modified β-cyclodextrin with adamantane modified polyethylenimine, which could be used as a biocompatible...

متن کامل

Molecular recognition studies on supramolecular systems. 32. Molecular recognition of dyes by organoselenium-bridged bis(beta-cyclodextrin)s.

A series of novel bis(beta-cyclodextrin)s tethered with organoselenium linkers, i.e., 6,6'-(o-phenylene-diseleno)-bridged bis(beta-cyclodextrin) (2), 6,6'-[2,2'-diselenobis(benzoyloxy)]-bridged bis(beta-cyclodextrin) (3), and 6,6'-[2,2'-diselenobis[2-(benzoylamino)ethylamino]]-bridged bis(beta-cyclodextrin) (4), were synthesized from beta-cyclodextrin (1). The inclusion complexation behavior of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Analytical sciences : the international journal of the Japan Society for Analytical Chemistry

دوره 23 10  شماره 

صفحات  -

تاریخ انتشار 2007